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Abstract. The discussion based on the generalized SUE- models for the wetting 
transition has until now argued that the longer-range wall potential tends to favour a 
limborder wetting transition. The presmt paper, however, proposes an analytically 
derived counter-emple 

Since Moldover and Cahn verified experimentally the existence of the wetting transi- 
tion [l] in 1980 the theory on the wetting transition has been developed rapidly [2]. 
This kind of phase transition can be roughly described as follows. Consider a system 
of fluid which is located a t  the coexistence line of phases A and B (for instance, gas 
and liquid), coming into contact with a solid wall. Assuming that phase B fills the 
space far from the wall, and that the presence of the wall favours phase A, a phase-A 
film would form close to the wall. The stale where the phase-A film has macroscopic 
thickness is called the completely wet state, while the state where phase-A film has 
only microscopic thickness is called the partially wet state. As the temperature in- 
creases dong the A-B coexistence line up to a critical value T, the state of the system 
can transform from a partially wet state to a completely wet state. This kind of phase 
transition is called the wetting transition. The wetting transition can be discussed 
using van der Waals theory. In the modern van der Waals theory [3] the interaction 
between molecules is split into two parts. The reference system is taken to be a hard- 
core system with a short-range repulsion, while the weak long-range attractive force 
is treated as a small perturbation. 

Let us consider a system which consists of a simple fluid and a solid wall. For 
simplicity, we m u m e  that  the wall is represented by a plane located at I = 0, the 
fluid fills the half-space I > 0, and the system is uniform a t  the y and z direction. 
The Helmholtz surface free energy then reads 

us = lW d I  Ifh(Ph(2)) - b - @(Z)lP(I) t P I  t ; lm d I  l- dI’X(lI - I‘l)P(I)P(I’) 

(1) 
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where p and p are the chemical potential and the pressure of the fluid, respectively, 
p(z) is the density profile, &@(I)) is the free-energy density of the hard-core system, 
and x(lz - z’l) and e(,) are the intermolecular and wall potentials, respectively. The 
equilibrium state of the system would be decided by minimizing the free energy us, 
i.e., 

6 c s / 6 p ( 2 )  = 0 

which gives the result that 

Here p,, = (af,,/ap), is the chemical potential of the hard-core system. Because of 
the non-linear dependence of the chemical potential on p ,  it is very difficult to solve 
the integral equation (2). To simplify this non-linear equation Sullivan chose [4,5] 

so that the integral equation (2) could be transformed into a second-order ordinary 
differential equation. The special choice of (3) and (4) defines the famous Sullivan 
model. The discussion based on this model shows that it displays only a second-order 
wetting transition. It is well known that the wetting transition in a real system could 
also be of first order. For this reason several generalizations of this model have been 
proposed. 

For a simple fluid there are at least three ways to generalize the Sullivan model. 
The assumption (3) is maintained, while the expression (4) is modified in these three 
cases. Tarazona and Evans take [6] 

~ ( z )  = -ce-p= (5) 
to replace the assumption (4). They performed a numerical calculation on this model, 
followed by several analytical and numerical works by other authors [7-91. The choice 
p = 1 led back to the Sullivan model itself. It is very clear that a smaller value 
of p leads to a longer-range of the wall force. Hauge and Schick proposed another 
expression [IO] 

e ( + )  = -€e-= - cpe-Pz p Q 1 (6) 

which means that a longer-range wall potential is attached to the Sullivan potential. 
Besides this, Piasecki and Aauge gave the third generalization [ l l ,  121 

@(z) = -€e-= - E ~ S ( L ~  - L). (7) 
With z and eo given, a larger value of zo correspods to a longer-range force. With 

= 0 the potential (7) comes back to the Sullivan model itself, hence the force 
range of the third generalization cannot be shoder than that of the Sullivan model. 
The wall potentials considered in this paper are all of exponential form, often called 
‘short-range potentials’. On the contrary, the term ‘long-range potential’ is often used 
for potentials with power-law tails, which will not be discussed here. Discussion on 
all these generalized Sullivan models led to a common conclusion: 
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Figure 1. The w d  potential for the model under consideration. A small value of 7 
implies a larger IO, and BO a Longer-range force. 

Proposition 1. A longer-range force favours a first-order wetting transition. 

Is proposition 1 a conclusion of the starting point (1) or is it dependent on the 
special choice (5), (6), and (7)? The motivation of the present paper is to give a clear 
answer to this question. 

Let us consider the following choice of wall potential (see figure 1): 

i f x < x ,  

if x > xo. 
@(I) = 

Denoting 

Y = l/xo (9) 

one has that a smaller value of y corresponds to a larger x,,, which means a force 
of longer range. In contrast to the model (7), we have that the force range of (8) 
cannot be longer than that of the Sullivan model, since the longest case xo -t cm 
in (8) corresponds to the Sullivan model. According to proposition 1 we would only 
expect a second-order wetting transition for model (8). We will discuss this model 
with the purpose of re-examining proposition 1. 

Substituting (3) into the integral equation (2), and differentiating with respect to 
x, one obtains the result that 

Differentiating the above equation once more with respect to x we have 

By using (8) we can rewrite the above equation as 
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Noting that the integral terms in the left-hand sides of (2) and (10) are continuous 
functions of I, we have at both sides of the point z = l/7 the connective conditions 

Two boundary conditions are necessary for determining the solution of the second- 
order differential equation (12). Assuming that a gas phase fills the space far away 
from the wall we have a boundary condition that 

P(" - ..) = f g  (15) 

where pg is the density of the gas phase. The other boundary condition, which is 
called the wall condition, could be obtained by putting z = 0 in (10) and using (2), 
that is 

For simplicity we chose the ideal latticegas model for the hard-core system, i.e, 

p(p ) - -  '[ l + t a n h  (2::T)]. - 
- 2  

The above problem of wetting transition is equivalent to the motion of a classical 
particle in a conservative potential. In fact, putting 

e = f % / ( k E q  = (18) 
to express the coordinate and the corresponding time of the classical particle, respec- 
tively, and denoting 

E = c/kET A = a/kET M = ( l / k B T ) ( p  + 0112) 

we can rewrite (12) as 

E - (A/2)tanh(E/2) + Ee-'/Y - M if z < I/7 

if z > l/7. { E - (A/2) tanh(e/2) - M 
I =  

The connective conditions (13) and (14) are then written as 

[(1/7 + 0) = ((1/7 - 0) 

i ( l / 7  + 0) - i ( l / 7  - 0) = Ee-'/Y 
and 

while the wall condition is written as 

((0) = ((0) - M + ;A - ~ ( 2  - e - 1 9  

The equation of motion (20) can also be written as 

if t < l/7 
if t > l/7 
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with the conservative potential 

V’(<) = AIn(e6’’ + ,-Elz) - f(< - M + Ee-’ly)’ + C’ 

v(<) = AIn(eE1’ +e+/’) - ‘(s 2 - M)’ + C” 

if t < l/y (25) 

if t > l/y (26)  
and 

Here C’ and C” are constants such that the maximum of the potentials V‘ and V 
is zero. In the present paper we restrict ourselves to the case of bulk twc-phase 
coexistence with M = 0. When the temperature is below the bulk critical temperature 
Tc, we have A > 4, so the potential V(<) has two maxima at < = 3q5, with 4 > 0 
determined by 

4 = $ A  tanh(+/2). (27) 

The fluid density profil~ in the wetting picture corresponds to a trajectory of the 
classical particle in the f f  phase space. The point (+,O) in phase space is called the 
liquid point, while the point (-+,O) is called the gas point. 

Figure 2. A certain trajectory in phase space. See text for details 

Let us consider a certain trajectory in phase space (see figure 2): starting with 
(<o,.$o) at t = 0, getting to (+, -Ee-’/y) at t = l/y - 0, jumping to the liquid point 
(+,O) at t = I/y + 0 and staying there for an ‘infinitely’ long time, then going to the 
gas point (-4,O). It is clear that the total energy of this particle at t = l /y - 0 is 

G = lE’e-2/7 2 + V’(4). (28) 

The starting point (&,,io) is then determined by 

and 

i o  = -Jm. 
Let us now consider another trajectory close to the previous one. A variation of (24) 
gives that 
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We solve (31) formally by putting 
t 

6<(t )  = 6<(0) exp dt'K(t'). 

Then 

K ( t )  = 6i/6[ 

From (31) and (32), one derives the equation of motion for K(1)  

(32) 

(33) 

with V(<) determined by (30). We denote 

which is the inverse of the bulk correlation length [2]. 
I t  is easy to prove from equations (25), (26) and (27) that 

< 1. 24 x z =  1 -  e6 -e-+ 

With a given K(O), the value of K ( t )  at 1 = l /7-0 is determined by (33). We define 
KO such that with the initial value 

K ( 0 )  = KO (34) 

the equation (33) gives exactly that 

K(l/y-O)=A (35) 

at t = l/y - 0. According to the criterion in [9] we have 

Second-order wetting transition 

Tricricality if KO = 1. 

if 0 < KO < 1 
First-order wetting transition if KO < 0 or KO > 1 (36) 

So far, we have in principle sketched the way to predict quantitatively the locus 
of tricriticality. However, it is not easy to solve the equation of motion (33) for given 
value of yo analytically. Since the motivation of the present paper is to propose a 
counter-example to proposition 1, we can consider only the case when zo > 1, i.e. 
7 < 1. It is not difficult to see from equations (25) and (26) that the difference 
between V and V' must be very small when y < 1, so Vf(<) must have a maximum 
at some position, say $', close to +. We expand V(<) at < = 4 as 

1 1 
(37) V(<) = -,w - $12 + ZV& - 4 ) 3 +  " '  

V'(<) = v; - zA'*(< - d')2 + ,Vi(< - 4')3 + I,. . 
and V'(c) at < = 4' as 

(38) 
1 1 
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Denoting 

= ct - crt - $.Ze-2/7 - Ee-'/74) 

we have from equations (25) and (26) that 

V(f) = -c + Ee-'17(f - 4') + V'(f). (39) 

Deating I = Ee-'/7 as a small parameter, with the help of (37), (38) and (39) we 
obtain that 

4' = 4 - ( l / P ) l +  O(l2) 
A' = x + [V3/(2A3)]1 + O(12) 
v; = v, + O(f). 

By using (24) and (28) the equation of motion for t < l/7 can be written as 

(41) 
1 ($- x ") (f - 4') = -$(e - 4')2 + . . . . 

In the vicinity off  = 4' we may w u m e  that the solution has the following form: 

f ( t )  = 4' + ae"' +be-"' +el(t) (42) 

with a small corrective term & ( 1 )  = O(a2,ab,bz). Variation of (42) gives that 

6((t) = e"'6a + e-"'6b 

6i( t )  = X'e"'6a - X'e"'6b. 
(43) 

Equation (32) can then be rewritten as 

with q = exp(-2A'/y)6b/6a. Hence we have that 

By using the above results (35) is reduced to 

whih,  with the help of (40), gives that 

With the given model of the ideal lattice gas, we obtain from (26) that V, < 0. In 
the case of attractive wall E must be positive, so that r) < 0. Note that the absolute 
value of q is very small as long as y < 1. 
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First 

Second 
order 

0 - h 

Figure 3. The structure of parameter s p e .  The full line A-B-C is the locus of 
tricriticality. 

Now we can determine the order of the wetting transition according to the cri- 
terion (36). The denominator of the fraction in the right-hand side of (44) is zero 
when 

4x4 
-V.E exp(-2A’t) = -exp[(l - 2X’)/7] for 7 < 1. (47) 

For the case A’ < f the above relation gives t < 0, hence K ( t )  decreases continuously 
and monotonically in the interval 0 < t < l/7. For the case A’ > +, however, as 
long as 7 is sufficiently small, we can always find a value of to in (O,l/7), such that 
the denominator of K ( t )  becomes zero at t = to, while K ( t )  < 0 for t < to .  Paying 
attention to the fact that A = A’ as 7 --t 0, we arrive at the conclusion that X > f 
always gives a firstorder wetting transition as long as 7 < 0. It is obvious that 7 = 0 
is the Sullivan model itself, and a second-order wetting transition takes place. Hence 
we know that a section 4 < X < 1 of the straight line 7 = 0 in the A 7  parameter 
space is a part of the tricritical line. 

The locus of the tricricality for X < f can be calculated by examination on the 
equation K(0) = 1. In this caw (45) then gives that 

When X = f and 7 - 0 we have A’ = +, so for 7 3 0 the above equation gives that 

exp(2X/-,)q = -$. 
By using (46) we can write the above equation as 

Y 2 
(49) -- 

A -  1/2 - -lnl12V3EI 

When A - + and 7 + 0 it is easy to obtain from (26) that 

V, = -0.4415 4 = 1.3512 A = 4.5909. 

Since ((0) = 4 and ((0) = 0 the equation (23) gives 

E = (4/2) + (A/4) = 1.8233 

hence 

1 A - 1/2 - - -0.8818 (50) 

which predicts the direction of the tricritical line at X = 4 and y = 0 in parameter 
space. 
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Figure 3 shows the structure of parameter space, where the angle 8 = 41.4', and 
the line A-B-C is the tricritical line. More accurate calculation gives an additional 
term of order I = Ee-'lr on the righthand side of (50), which does not influence the 
angle 8. It is dear that a smaller value of 7, implying a longer range of the wall force, 
favours a second-order wetting transition instead of a first-order one. When the range 
of the wall force is shorter than that of the Sullivan model the system can still display 
a first-order wetting transition. 

The model presented here shows that within the van der Waals framework, starting 
with the expression of the free energy (I), proposition 1 might not be true. This 
proposition is indeed correct with the three models ( 5 ) ,  (6 )  and (7). The question 
as to what kind of wall force favours a first-order wetting transition is still open. 
In addition, when the fluctuations neglected in the van der Waals theory become 
important (for instance, the temperature close to the bulk critical temperature 'Tc, i.e. 
X -+ 0 ), the results may be changed significantly. 

The author wishes to thank Professor Huang Zu-Qia for discussion in detail throughout 
this work. This project is supported by the National Natural Science Foundation of 
China. 
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